

817124
(FN)

Reg. No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)
B.E./B.TECH (FULL TIME), END SEMESTER EXAMINATIONS, APRIL/MAY 2024
COMMON TO ALL BRANCHES
FIRST SEMESTER

MA3151 – MATRICES AND CALCULUS
(REGULATIONS 2023)

Duration: 3 hours

Maximum Marks: 100

Answer "All the Questions"
Part-A (10×2 = 20 Marks)

Q. No.	Questions	Marks
1	Write down a matrix A of order 3×3 such that the eigen values of the matrix $A^3 + I$ are 1947, 1950 and 2024.	2
2	Does the identity matrix of order 3×3 have an eigen vector with length 2024? Justify your answer.	2
3	The diameter and altitude of a can in the shape of a right circular cylinder are measured as 4 cm and 6 cm respectively. The possible error in each is 0.1 cm. Find approximately the maximum possible error in the value computed for the lateral surface.	2
4	If $u = f\left(\frac{x^2 + 2xy}{y^2 - 3xy}, \frac{y^2 - 4xy}{x^2 + 5xy}\right)$, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2
5	Find the Cauchy's principal value of the improper integral $\int_{-\infty}^{\infty} \sin \left[\sin \left(x^{N^2 - N + 1947} \right) \right] dx$ where N is the year in which your mathematics teacher was born.	2
6	Find the value of $\Gamma(-1/2)$.	2
7	Evaluate $\int_0^{1-x} \int_0^x xy dy dx$.	2
8	Using double integration, find the area of the circle $r = 1$.	2
9	Find the work done in moving a particle in the force field $\vec{F} = 3xy\vec{i} - y^2\vec{j}$ in the xy -plane along the curve $y = x$ from the point $(0, 0)$ to $(1, 1)$.	2
10	Define the notion of directional derivative of a scalar valued function $\phi(x, y, z)$.	2

Part- B (5×13=65Marks)

Q. No.		Questions	Marks
11 a	i	<p>Find all the eigen values of the matrix $A^2 + 2A - 3I$ if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $a+c=1$, $a+d=1$, $b+d=1$.</p> <p>(Your answer should NOT be in terms of a, b, c, d.)</p>	6
	ii	<p>Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find its inverse.</p>	7

OR

11 b		<p>Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form by using similarity transformation.</p>	13

12 a		<p>i Using Taylor's theorem, expand $f(x, y) = e^x \log(1 + y)$.</p>	6
		<p>ii If $z = f(x, y)$ and $x = e^u \cos v$ and $y = e^u \sin v$, then prove that $x \frac{\partial z}{\partial v} + y \frac{\partial z}{\partial u} = e^{2u} \frac{\partial z}{\partial y}$ and $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right]$.</p>	7

OR

12 b		<p>i If $u = f(x-y, y-z, z-x)$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.</p>	6

	ii	Find the minimum and maximum values of $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.	7
13 a	i	Show that $\int_a^b (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m, n)$.	6
	ii	Using the concept of differentiation under integral sign, evaluate $\int_0^a \frac{\log(1+ax)}{1+x^2} dx$.	7

OR

13 b	i	Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	6
	ii	Evaluate $\int_0^{\infty} xe^{-x^8} dx \times \int_0^{\infty} x^2 e^{-x^4} dx$.	7

14 a	i	Find the area that lies inside the cardioid $r = 1 + \cos\theta$ and outside the circle $r = 1$ by using double integration.	6
	ii	Evaluate $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$, taken over the volume of the sphere $x^2 + y^2 + z^2 = 1$.	7

OR

14 b	i	By changing the order, evaluate $\int_0^1 \int_{e^x}^e \frac{1}{\log(y)} dy dx$.	6
	ii	By changing to polar coordinates, evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$.	7

15 a	i	<p>Verify Green's theorem for</p> $\int_C (xy + y^2)dx + x^2 dy$ <p>where C is bounded by $y=x$ and $y=x^2$.</p>	6
	ii	<p>Verify Stoke's theorem for the vector field</p> $\vec{F} = (2x - y)\vec{i} - yz^2 \vec{j} - y^2 z \vec{k}$ <p>over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.</p>	7

OR

15 b	<p>Verify Gauss divergence theorem for</p> $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ <p>taken over the cube formed by the planes $x=0, y=0, z=0, x=1, y=1$, and $z=1$.</p>	13
------	--	----

Part- C (Compulsory Question) (1×15 = 15 Marks)

Q. No.	Questions		Marks
16	i	Find the area bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$ by using double integration.	7
	ii	Find the dimension of the rectangular box, open at the top, of maximum capacity, whose surface area is 108 square cm.	8
